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The general conditions are investigated under which an assembly of point charges will produce a zero 
electric-field gradient (ZEFG) at a reference point s0(0,0,0). It is shown that for equal charges it is 
necessary that they form a configuration of cubic or icosahedral symmetry about So. Unequal charges 
must be located at the vertices of a centrosymmetric polyhedron of symmetry m3m, m3 or 53m in such 
a way that the sum of the charge values in a pair of charges related by the centre of symmetry of the 
polyhedron be the same for all the pairs. Configurations of this kind are self-dual (SD) with respect 
to interchange of vertices by inversion in the centre of symmetry of the polyhedron. Self-dual con- 
figurations containing two kinds of charges (SD2C) are listed for polyhedra of up to 20 vertices and 
enumerated for all the centrosymmetric cubic and icosahedral Archimedean polyhedra and their duals. 
The method of enumeration without construction is described. The conditions under which such 
discrete ZEFG configurations can be embedded in three-dimensional crystal structures to give ZEFG 
structures are also investigated and a number of examples of such embeddings are given. The potential 
usefulness of such structures as M6ssbauer null matrices is briefly discussed. 

Certain properties of atoms in ionic crystals depend on 
the electric field gradient (EFG) at the atom or its 
nucleus. For example, the quadrupole splitting in the 
M6ssbauer spectrum of 57Fe or a~9Sn depends on the 
EFG at the M6ssbauer-active nucleus. When the EFG 
is zero (ZEFG), the quadrupole splitting is zero. The 
EFG is the resultant of two contributions, one due to 
the asymmetry of the electronic charge-density dis- 
tribution in the M6ssbauer-active atom M* and the 
other, to charges on ions surrounding M*. When the 
charge-density distribution about the M* nucleus is 
of 'spherical' symmetry, the EFG from this source is 
zero (cf. for example, Collins & Travis, 1967); a case 
in point would be 5VFe3+ (high-spin) in a purely ionic 
crystal. In the following we shall investigate the condi- 
tions under which the second contribution, the EFG 
due to ionic charges surrounding M*, is zero. This 
problem in electrostatics does not appear to have 
received a general treatment before. The charges will 
be considered to be point charges throughout; the 
coordinate system is Cartesian. 

Let M* be situated at a site s0(0,0,0). A number n of 
point charges of values u~ located at s~(x~,y~,z~) will 
produce at So an EFG given by the tensor 

E F G =  rl") ~rl(~) --H")I t r E F G = 0  X y  ~ y y  , , 

X g  L y 

= r/(~) = 3u~ri-Sx~y~ etc. where "(~) u~r~S(3x~-r~) etc., ~xv X X  

ri=(x~+y~+z~) 1/2, and the summation is over the n 
sites. 

Only two of the three eigenvalues of this real 
symmetric matrix, [v=l ~ Iv.I ~ Ivxxl, are needed to 
define the gradient EFG = V~z(1 + r/Z/3) ~/2, 11 = (vyy- Vxx)/ 
v~, 0 < r/< 1, because of v~,x + vyy + v~ = 0. For the EFG 
at So to be zero, v~ must be zero and consequently 
vxx= vyy = v~.z =0. For the three eigenvalues to be zero, 
the EFG matrix must be null. 

For each particular value of r~=(e2+rl2+2~) ~/2, the 
nullity of EFG is satisfied, nontrivially, by subsets 5°j 
(or their sums) of the complete set 50 of the n~ coor- 
dinate triplets formed by letter and sign permutations 
of e~, rh, 2i (the condition for u~ is discussed below). The 
number nj of elements in b°j is a factor or n~. Each 
subset 5:j consists of one half of the full set o f  sign 
permutations performed on the cyclic permutations 
(~rh2~) or (e~2~rh), subject to the restriction that the 
coordinate triplets in a subset must not be related by 
complete sign inversion, i.e. the sites represented by 
them must not be centrosymmetric with respect to 
So. These subsets are the minimum subsets of 5" that 
will yield E F G =  0. 

The subsets 5:j(eirh23 and 5:~ (eg2~rh) are related by 
interchange of two of the axes of reference (=re-  
flexion in a 45 ° plane). Each subset 5:j(eirh23 has 
associated with it a complementary subset 5:2(e~rh23 
consisting of the other half of the full set of sign per- 
mutations of the cyclic permutations (e~rh23, and 
likewise for 5:J and 5:J*. When [ei[# [rh[-¢ [2il, the 
two complementary pairs of subsets are mutually 
exclusive and 5:j + 5:~ + 5:J + 5°J* = 5:. If k (1 < j  < k) 
is the total number of such distinct decompositions of 

A C 3 1 A  - 2*  
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50, the total number of subsets satisfying the nullity of 
EFG is 4k. When two of le~l, lr/i[,]2~[ are equal, the 
permutations (e~rh2~) and (e~2Fh) are no longer distinct 
and 50j = 50J. Hence 5 ° = 50~ + 50] and the total 
number of subsets for which EFG = (0) is 2k. 

The charge values associated with the coordinate 
triplets of a particular subset are identical, but the 
values uij(50~),u~(50";),u~(50J),uij(50J*) may all be 
different and so can u~j for different values of j. The 
condition EFG=(0)  is satisfied by each subset se- 
parately, regardless of the charge value of u~j(50j), and 
consequently it is also satisfied by any sum of the 
subsets, including 50. 

Example 1. Let e=2,  r /= l ,  2=0.  A possible ZEFG 
subset would be, for example, 

50~=2,1,0; 1,0,2; 0,2,1; 2 , -  1,0; - 1,0,2; 
0,2, - 1 

5 0 ~ ' = - 2 , - 1 , 0 ;  - 1 , 0 , - 2 ;  0 , - 2 , - 1 ;  - 2 , 1 , 0 ;  
1 ,0,-  2; 0 , - 2 , 1  

50~ =1,2 ,0;  2,0,1; 0,1,2; - 1 , 2 , 0 ;  2 , 0 , -  1; 
0, - 1,2 

5 0 ~ * = -  1 , - 2 , 0 ;  - 2 , 0 , - 1 ;  0 , - 1 , - 2 ;  
1 , - 2 , 0 ;  -2 ,0 ,1  ; 0 , 1 , - 2 .  

The subsets 50j of coordinate triplets correspond to 
sets of vertices of a polyhedron ~ of V vertices and 
symmetry m3m, m3 or 53m inscribed in a sphere of 
radius r, with centre at s0.~: The vertices in such a set 
are permutable by the symmetry operations of a non- 
centrosymmetric subgroup of the point group of ~ .  If 
the n, charges have the same value, 

(1) every configuration on ~ consisting of 1//2 ver- 
tices and with no two vertices related by the centre of 
symmetry of ~ ,  is a representation of 50~ and hence a 
ZEFG configuration. The representations 50j and 502 
are self-dual (SD) relative to interchange of the vertices 
by inversion in s0.§ 

(2) The combination of every such configuration 
with its own complement is a representation of 50j+ 
50j' and hence a centrosymmetric ZEFG configuration; 
it is in fact ~ with all the vertices occupied by equal 
charges and hence its symmetry is m3m, m3 or 53m. 

(3) The representation of 50j + 50~ + 50J + 50J* = 50 
is the vertices of a polyhedron ~ - - = ~  of symmetry 
m3m or 53m and having 2V vertices. If 50j=50J, 
~-- = ~ .  

(4) Configurations representing mixed sums, e.g. 
50j+50J or 50j' +50j  +50j*,  are noncentrosymmetric 
and embedded in 3-. 

In the Cartesian coordinate system the equivalence of ver- 
tices of polyhedra of symmetry 53m and V>20 cannot be 
expressed by permutations of a single triplet 8,r/,2 and two or 
more distinct triplets are required (cf. p. 23 and Table 1). 
However, the subsets Sj are formed from permutations of both, 
or all, such triplets. The apparent composite character of such 
polyhedra simply reflects the unsuitability of the Cartesian 
system to describe symmetry operations of order 5. 

§ Duality in this context is not the familiar face-vertex 
duality of polyhedra; this latter is referrred to in Table 4 by ~. 

Example 2. In Example 1 ~@ is an icosahedron of 
symmetry m3 (= dual of a crystallographic pentagon- 
dodecahedron) and V=12; J -  is a truncated octa- 
hedron (m3m, V= 24). 501 + 50~' and 50~ = 50~* corre- 
spond to two different orientations of ~@, 50 corre- 
sponds to 3-. Representations of the subsets 501,50~', 
50~,50x** are configurations of symmetry 3 on ~ and 
can be brought to coincidence by rotation and re- 
flexion. 501 + 50~ and 50~ + 50~* have symmetry 3m 
and can be rotated into each other. 501+501" and 
50~' + 50~ have symmetry 32; 50~ + 50~' + 50~, 50x + 
50~ + 501", 50~ + 50~ + 50~* and 50~' + 50~ + 50~* have 
symmetry 3 and differ only by rotation and reflexion. 
The point groups 3, 32, and 3m are noncentrosymme- 
tric subgroups of m3m. Each contains two rotations of 
order three, consistent with the cyclic permutation of 
three different values of the coordinate numbers e, r/, 2. 

The representations of 50j+50j' and 50, and the 
cubic representations of 50, correspond to all the 
vertices of a cubic or icosahedral polyhedron being 
occupied by equal charges. The cubic arrangements of 
this kind are well known to yield ZEFG. The less ob- 
vious ZEFG configurations are those under (1) that 
correspond to the noncentrosymmetric non-cubic re- 
presentations of 50j: 

Example 3. The configuration abcd on the cube (Table 
1) is ZEFG, even though only the four corners of one 
of the cube faces contain equal charges and the other 
corners are unoccupied. 

When ugj(50j)¢ ugj(502), the arrangement of charges 
corresponding to 50j + 5~2 is no longer centrosymme- 
tric with respect to charge inversion in So, but the vertex 
coordinates are. This configuration ~q is then self-dual 
relative to both vertex and charge inversion. When 
charge inversion utj ~ u*j is admitted as a symmetry 
operation, the symmetry of ~ is described by a di- 
chromatic point group G(c~). This group derives from 
a proper subgroup of m3m or 53m by changing some 
of the symmetry operations of the subgroup to colour- 
changing (antisymmetry) operations, e.g. 2--+ 2' or 
m ~ m'. Otherwise the symmetry of c~ is described by 
the maximal monochromatic subgroup M of G (cf. 
for example, Birss, 1964). M is a proper noncentro- 
symmetric subgroup of m3m or 53m and a subgroup 
of index 2 in G, hence invariant. The group G can be 
decomposed according to G = M + M × T'. The ele- 
ments of the coset M × T' are the symmetry operations 
that will convert cg into its dual (chromatic inversion 
- -  ! ! ! ! 

1' and one or several of the following" m , 2 , 3 , 4 ,  
5',Y, 5'). 

On a particular ~@ each 50j(u~j) corresponds to a 
ZEFG configuration of equal charges u,j. Hence 
50j(uij)+50~.(u~) also yields a ZEFG configuration. 
In this configuration every centrosymmetric pair of 
charges is of the type (u,j,u~'~). The contribution made 
to Y U(~ ) by a charge u,~ at (x,y,z) is uuK1(xx); that 
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Table 1. Vertex coordinates for  polyhedra o f  V up to 20 
in standard orientations 

The coordinates have been normalized by placing all the ver- 
tices on a sphere of unit radius. 

Octahedron 

a(0,0,1)= -d ,  b(1,0,0) = -e ,  ¢(0,1,0)-- - f  

Cube, ~ = 1/3/3 
a(e,e,e)=-e, b ( -e ,e ,e )=- f ,  c ( - e , - t , e ) = - g ,  d(e,-e,e) 
~ - h  

Cuboctahedron, e = 1/2/2 
a(~,0,~)=-g, b(0,~,e)=-h, c ( -~ ,0 ,e )=- i ,  d(0,-e,~) 
= --j, e(e,e,O) = - k ,  f(-e,e,O)= - m  

Icosahedron, e = [(5 - I/5)] 10] ~n, r/= [(5 + 1/5)/10] ~n 
a(e,0,t/) = - g ,  b(0,r/,t)=-h, c( - e, 0, r/) = - i, d(0 , -  r/,e) 
= - j ,  e(r/ ,  - e,  0 )  = - k ,  f ( t / ,  e,  0 )  = - m 

Tetrahexahedron, e = 1/3/3 

a(e,e,t) = - e ,  b ( - e , e , t ) = - f ,  c ( - t , - e , e ) = - g ,  
d(~, - ~, e) = - h 
i(0, 0,1) = --m, j(1,0,0) = --n, k(0,1,0) = - p  

Augmented cuboctahedron, V= 18, e = 1/2/2 

a(t,O,e)=-g, b(O,e,e)=-h, c ( -e ,0 , e )=- i ,  d(0,-t ,e)  
=--], e (e , e ,0 )=-k , f ( -e , e ,O)=-m 
n(0, 0,1) = -r,p(1,0,0)= -s,q(O, 1,0)= - t  

Augmented cuboctahedron, V= 20, e = ]/2/2, r/= 1/313 
a(e,0,e)= -g ,  b(0,t,e) = -h ,  c(-e,0,e) = - i ,  d(0,-e,e) 
=--j ,  e (e , e ,0 )=-k , f ( -e , e ,O)=-m 
n(r/, ~/, r/) = - s ,  p ( -  ~/,r/,~/) = - t ,  q(-  ~/, --q,q) = -u ,  
r(rt, - r~, ~) = - v 

Dodecahedron, (21/3)e = 2, (21/3)r/= 1/5 + 1, (21/3)2 = 1/5 - 1 
a(e,e,e) = - e ,  b (e , - e , e )=- f ,  c ( e , - e , - e ) = - g ,  d(e,e,-e) 
= - h  
i(rl, O,2) = --q, j(rl, O, --30 = - r ,  k(),, ~/, 0) = - s ,  
m(-  2, r/,0) = - t,n(0,2, - r / )= u, p(0, -2 ,  -~/)= - v  

made by a charge u ;) at ( - x , - y , -  z)is  u':jKl(xx), and 
similarly for ~U(,~), ~U(~)  etc. V U(~) can thus be 
written as ~,(u~j+u*j)Ko(xx)=O, where g= 1 ,2 , . . .  V/2, 

g 

and similarly for ~,U(~) etc. Consequently the two 
charges in a centrosymmetric pair can have any values 
provided their sum is the same as that for any other 

* U* centrosymmetric charge pair in 9~j(u~j) + ~ (~j), so 
that in a subset sum A'~j+ S:'~ there can be up to V 
different kinds of charges provided the sums of their 
values in centrosymmetric pairs are identical.~ 

In the case of 5: i + ~ + 5:~ + 5"J* = 50 each of the 
four subsets of  the decomposition can have a different 
charge value associated with it, which gives rise to a 
Z E F G  arrangement of four kinds of charge (=four -  
colouring of the vertices of ~ without any relation 
between u,j + u* ~j and u~*j + u f f  having to exist. 

Example 4. In Example 3 the charges at the vertices 
a, b, c, d may be thought of as having the value + 2 and 

Use has been made of this fact in an analysis of the origin 
of the quadrupole splitting in the M6ssbauer spectrum of 
cubic (disordered) LiFeO2 (Ayasse, 1972; Knop, Ayasse, 
Meads, Parker & Woodhams, 1975). 

the unoccupied vertices e,f,g, h as carrying zero charge. 
This arrangement is equivalent to one in which all 
eight vertices of the cube are occupied by charges of 
value + 1. Another possible equivalent arrangement is 
a (3) -e ( -1) ,  b ( -2 ) - f (4 ) ,  c(1)-g(1), d(0)-h(2). 

The representations of S:j can thus always be re- 
garded as SD configurations of two kinds of charges 
corresponding to subset sums ~(u~j)+S:~(u~*j) in 
which u*j = 0  and need not be treated separately. The 
nonzero charges are distributed among the vertices of 
centrosymmetric polyhedra  9~ of V~ vertices and 
symmetry m3m, m3 or 53m; not all the vertices of a 
polyhedron need be occupied by nonzero charges. The 
polyhedra 9~ are 'concentric', i.e. they share the geo- 
metric centre of gravity in So. When So and s are points 
of a crystallographic lattice, only arrangements of cubic 
symmetry are admissible. The point-group symmetry 
of the polyhedra is then governed by the site symmetry 
at So. True icosahedral Z E F G  configurations could 
exist in large rigid polyhedral ions or molecules con- 
taining charge maxima on the individual constituent 
atoms ('localized' charge), or in similar charge assem- 
blies that are not lattice-bound in the crystallographic 
sense, and would then be of importance in certain types 
of nuclear resonance experiments. 

C o n s t r u c t i o n  o f  Z E F G  c o n f i g u r a t i o n s  

The conditions necessary for the construction of Z E F G  
configurations follow immediately from the preceding" 

(5) The configuration ~ must be embedded in a 
centrosymmetric isogonal, i.e. platonic (~ f )  or Archi- 
medean ( d ,  excluding prisms and antiprisms), poly- 
hedron ~ of V vertices inscribed in a sphere, or in a 
number of such polyhedra inscribed in concentric 
spheres. The isohedral duals of d (the Catalan poly- 
hedra, d * ) ,  whose vertex coordinates cannot be 
generated from a single triplet of coordinate numbers 
e,r/,2, must be treated as combinations of isogonal 
polyhedra properly oriented relative to one another. 

(6) For  2n< V kinds of charges At, i= 1 ,2 , . . . , 2n ,  
the configuration <f must be self-dual, i.e. one in which 
pairs of vertices related by the centre of symmetry of 

are occupied by pairs of different charges (A1, A2,), 
(Az, A2n-0 etc., satisfying the condition A I + A z ,  = 
Az + A2n_a = . . . = A, + An+ ~. All centrosymmetric 
charge pairs are then polar, hence the point group of ~f 
is a noncentrosymmetric subgroup of the point group 
of 9 ~. 

(7) 2n + 1 kinds of charges At cannot all be different 
because of A I + A 2 , + I = A 2 + A I . = . . .  = A , - I + A n + 3  = 
A , + A , + z = 2 A , + I ,  and neutral charge pairs (A,+~, 
A,+0  will be present. :g is then SD relative to the non- 
neutral charge pairs. 

A configuration is regarded as distinct if it cannot 
be brought to coincidence, by rotation or reflexion or 
both, with a configuration already listed. 

Because of the considerable complexity of the sub- 
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ject only the case of two kinds of charge will be treated 
in detail. Here the charge composition of ~ is 
restricted to A v/zBv/2. 

For small values of V construction of all the SD 2- 
colour (SD2C) configurations on ~ and elimination of 
duplicates can be accomplished relatively easily by 
inspection of drawings or models, but for large values 
of V this procedure is prohibitive unless adapted to 
computer search by exhaustion. When dealing with 
composite SD configurations a reduction of effort can 
be attained as follows. A vector sum ~ , ,  i = 1,2 . . . .  , z, 
of the radius vectors (from So) of all the vertices con- 
taining one kind of charge is formed for each of the z 
constituent SD configurations c~. Leaving ~ t  sta- 
tionary, the other z -  1 vector sums are permuted over 
all the permissible orientations on ~ .  This is equiv- 
alent to reducing each cg+ to a point on Nt and 
forming all the distinct configurations of the z points. 

In a later section we shall examine some of the pro- 
perties of the SD2C configurations on polyhedra of 
V<20. However, as a check on the completeness of 
our listing,.~ and to form an idea of what would be 
involved in extending the construction of such con- 
figurations beyond V= 20, we shall first seek the total 
number N~ of distinct SD configurations A v / z B v / 2  o n  
polyhedra ~ ,  i.e. the number of distinct decomposi- 
tions 5e~ + 5ej '. For convenience of description we shall 
formulate the problem in terms of two colours (black 
and white) instead of two kinds of charges. Two related 
enumeration problems will be considered at the same 
time: 

(a) What is the total number Nz of distinct self- 
complementary (SC) two-colourings of the vertices of 

in which the configuration is unchanged on inter- 
changing the colours? Since all SD configurations are 
sc, N,>_NI. 

(b) What is the total number N3 of distinct two- 
colourings of ~ with an equal number of vertices of 
each colour? 

All these questions are answered below using the 
enumeration theory developed by Redfield and by 
P61ya (of. Harary & Palmer, 1973; Palmer & Robinson 
1975). Evaluation of N3 on convex polyhedra in gen- 
eral has been dealt with by Knop, Barker & White 
(1975), who have tabulated the values of N3 also for 
the various subgroup symmetries of the polyhedra 
discussed in the present paper. 

Enumeration of SD two-colourings 

Let p be a positive integer and consider the points on 
the sphere of radius 1/p whose coordinates are all 
integers. These points correspond to the integer solu- 
tions of 

x2 + y2 + z2=p . (1) 

The configurat ions listed in Table 7 were obta ined without  
recourse to compu te r  search. 

Each such point (x~,y~,z~) has an opposite or dual 
vertex ( - x ~ , - y ~ , - z ~ )  that is also a solution. When 
p = 1, two of the variables must be zero while the other 
is + 1 or - 1 .  Hence there are six solutions and the 
rotations or reflexions of the sphere which permute 
these six solutions constitute a representation of the 
octahedral group of order 48 and degree six. Solutions 
which have two coordinates equal to zero are called 
type I solutions. There are five other different types, 
each of which has associated with it a different isogonal 
polyhedron and a different transitive representation 
of the octahedral group (Table 2). 

Table 2. The six types o f  solution for p = 1 

Type  Polyhedron  V Typical vertex 

I Oc tahedron  6 (e, 0, 0) 
II Cuboc tahed ron  12 (e, e, 0) 
III  Cube 8 (e, e, e) 
IV Trunca ted  oc tahedron  24 (e, r/, 0) 
V Trunca ted  cube 24 (e, e, r/) 
VI Trunca ted  cuboc tahedron  48 (e,r/,2) 

In Table 3 we display all the different terms in the 
cycle indices of these six representations of the octa- 
hedral group. The variables Sk correspond to SD cycles 
in which k/2 opposite pairs of points are permuted; 
the term t~ corresponds to a pair of cycles, each per- 
muting the k opposite points of the other. A few simple 
observations facilitate the compilation of the entries 
for the reflections. They can all be obtained from the 
corresponding rotation entry by the following rules: 

1 and vice versa; (ii) t~  (i) t~k+~ always becomes SZ(2k+X) 
and sl~ are always unchanged. 

Table 3. The cycle indices o f  the six types of  representa- 
tions of  the octahedral group of  order 48 

Stewart 's  (1970) book  has a section whose content  includes 
essentially the informat ion  listed here under  types I, II and III. 

N u m b e r  of  Type  
permuta t ions  I II III  IV V VI 

Rota t ions  

1 t~ tl ~ t~ tp  tP t'? 
6 i 2 s~t~ t~ 2 a t~ t~ 2 s4t I $4/' 4 
3 2 2 s~t~ t~ , 8 t~2 t~4 $2tl  $2t2 
8 t 2 t+a 121ta2 t~ taa t] 6 
6 1 2 s~t 2 + 2 2 t~2 o2, to t24 S2t 2 11'2 $2/' 2 o 2 / 2  

Reflections 
1 s]  s~ s l  s~ 2 s2 x2 s~ + 
6 x 1 1 2 t~ s~t~ t~ tl 2 $2S4 $4t4 
3 1 4 4 4 t l  8 8 t~2 t~4 s2 t l  t l t 2  t i t 2  
8 s~ s~ 1 1 s~ s~ s~ $2S6 
6 2 2 1 , 2 , 4  4 2 t~2 t~tx20 t~+ t it 2 s 2,1-2 t ~t 2 

Table 3 can be used to calculate N1, N2, and Na for 
any combination of the six different types of solutions 
of equation (1). This is important when the polyhedron 
is isohedral (d*)  or when it is desired to consider 
combinations of concentric isogonal polyhedra that do 
not produce an isogonal polyhedron. 
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Example 5. Consider the lattice points which are solu- 
tions of  the equation x z +yZ +z2< 3. There is one solu, 
tion of  type I, one of type II, and one of  type III. 
Using Table 3 to express the cycle index of  the octa- 
hedral  group represented as a permutat ion group on 
the points of  solution I (octahedron) gives the following 

+ s2 + 6s2 s 4 --I- result: ( ~ )  [t6+6s~t2+3s2t2+8t]+6s~t 2 3 1 t 
3sJt~+Ss~+6t2t2]; the divisor 48 is the order of  the 
group. In applying the enumerat ion theorem for SD2C 
configurations, we set Sk=0 and tk = 1/2 and obtain 
N x = ( ~ ) ( 2 3 + 8 x 2 + 6 × 2 × 2 ) = 1 ,  i.e. there is only 
one SD2C configuration on the octahedron.  The three 
solutions can be combined to produce a type I + II + III  
Catalan polyhedron of V =  26, the hexoctahedron. Each 
term of  the cycle index for this combinat ion is a prod- 
uct of  the corresponding terms for types I, II,  and 
I I I :  (z~) [(t6) (t~ 2) (tS) + 6(s~t~) (s~,t]) (t]) + 3(~t~) 
(s2t42) ( t J ) + . . . ] .  Setting sk=0  and t~,= 1/2 gives N~= 
176. 

Table 4. The vertices of  the polyhedra of  symmetry 53m 

Type Polyhedron V Typical vertex 
VII Icosahedron 12 (e,r/,0) 
VIII Dodecahedront 20 (e,e,e), (r/,2,0) 
IX Icosidodecahedron 30 (e, ~- 1, r/), (2, 0, 0) 
X Truncated icosahedron 60 
XI Truncated icosidodecahedron 120 

"~ The vertex coordinates of the crystallographic pentagon- 
dodecahedron (m3) are of the same type but the polyhedron 
has two kinds of edges. For illustrations of the icosahedral 
solids see Nowacki (1933). 

Table 5. The cycle indices o f  representations o f  the 
icosahedral group of  order 120 

Number of Type 
permutations VII VIII IX X XI 

Rotations 
1 t I' t ~o t~0 t~0 t ~20 

24 t2t 2 t~ t 6 t~ 2 t~ 4 I 5 
20 t 4 t t 2t 30 t 31° t 20 t 40 
15 2 4 2 8 ~, 2 , ,2/ ,  12 02, 28 t ~0 $2t2 $2t2 t 1o2L2 0 2 t 2  

Reflexions 
1 s 6 stz ° sl 5 s] ° s26° 

24 1 I 12 S2S10 $20 $310 S160 $10 
20 s 2 s2.¢613 $5 $610 Sg0 
15 t4t~ txt24 S 'J2"l'2t~l'4'12 t4t~a t6o 

The same approach  applies to colouring the vertices 
of  the polyhedra of  symmetry 53m (Tables 4, 5). Once 
the terms for the rotat ions are found, the same rules (i) 
and (ii) can be used to obtain entries for the reflexions. 
In complete analogy with the cubic polyhedra,  the 
cycle-index terms for a polyhedron of  a composite  
type are obtained simply by multiplying the corre- 
sponding terms for the constituent types. For  example, 
the terms for the tr isicosahedron ( V =  32) are obtained 
by multiplying the corresponding terms for VII and 
VIII  in Table 5; the terms for the trapezoidal hexe- 
contahedron ( V = 6 2 )  are found by multiplying the 
corresponding terms for VII,  VIII  and IX. This 'auf- 
bau'  principle can be extended indefinitely to con- 

Table 6. The numbers o f  distinct self-dual (N1), self-complementary (Nz), and all (N3) configurations on 
centrosymmetric polyhedra with V/2 black and V/2 white vertices 

V Polyhedron 1 Type N1 N2 N3 IOONI/N3 
6 Octahedron (~g) I 1 2 2 50 
8 Cube (~g; .@[octahedron]) III 3 6 6 50 

12 Cuboctahedron (sO) II 3 8 30 10 
12 Icosahedron (~g) VII 4 10 18 22.22 
14 Tetrahexahedron z (d* ;  

-@[truncated octahedron]) I, III 8 22 102 7-84 
18 Augmented cuboctahedron I, II 12 16 1154 1-04 
20 Dodecahedron (@g; 

-~[icosahedron]) VIII 20 140 1648 1.21 
20 Augmented cuboctahedron II, III 28 96 4078 0.69 
20 Pentagonal dodecahedron (m3) 56 176 7820 0-72 
24 Truncated cub@ (sO) V 114 1128 56846 0"20 
24 Truncated octahedron (d )  IV 120 1384 57168 0.21 
26 Hexoctahedron4 ( d * ;  

-~[trunc. cuboctahedron]) I, II, III 176 192 219952 0.08 
30 Icosidodecahedron (d )  IX 280 280 1295266 0.02 
32 Trisicosahedron s (d* ;  

.~[trunc. dodecahedron]) VII, VIII 688 8752 5024564 0.01 
48 Truncated cuboctahedron (d )  VI 351120 6642048 10 10 
60 Truncated icosahedron 6 (.~¢) X 8956224 143165760 10 10 
62 

120 

l~g, Platonic; 

Trapezoidal hexecontahedron 7 
( d * ;  .@[rhombicosidodecahedron]) VII, VIII, IX 17896064 17896064 10 10 

Truncated icosidodecahedron (~') XI s 9 10 10 

d ,  Archimedean; ~¢*, Catalan; 0~, dual polyhedron. 2Or trisoctahedron (d* ;  .@[truncated cube]) or rhombic dode- 
cahedron (d* ;  -~[cuboctahedron]). 3Or rhombicuboctahedron (~¢). 4Or deltoid trapezohedron ( d * ;  .@[rhombicuboctahedron]). 
SOr rhombic triacontahedron ( d * ;  .@[icosidodecahedron]) or pentakisdodecahedron ( d * ;  .@[truncated icosahedron])3 Or 
truncated dodecahedron (d )  or rhombicosidodecahedron (.~¢). 7Or hecatonicosahedron (hexicosahedron; d* ,  .~[truncated 
icosidodecahedron]), s9,607,679,473,668,096. 9297,838,055,356,944,384. 1°See text for expressions permitting these very large or 
very small numbers to be estimated. 



24 A R R A N G E M E N T S  O F  P O I N T  C H A R G E S  

T a b l e  7. Self-dual two-colour configurations ~, on some polyhedra, their dichromatic (G)  and one-colour (M)  
symmetries  and connectivity symbols (C.S . )  

G M C.S. ff G M C.S. 
Octahedron 

1. abc 3"m 3m 0300-3 
Cube 

1. abcd 4/m'mm 4mm 0400-4 3. acfh m'3m ~3m 0004--0 
2. abch 3'm 3m 1030- 3 

Cuboc tahedron  
1. abcdef 2"/m m 12300- 8 3. abcjkm 2'/m m 00321- 4 
2. abcejm 3' 3 03030- 6 

Icosahedron 
t. abcdef 5"m 5m 105000-10 3. abcejm 3"m 3m 003030- 6 
2. abcdem 3"m 3m 030300- 9 4. abdikm 5"m 5m 000501- 5 

Tetrahexahedron* 
1. abcdijk 2'/m rn 0131200-12 5. abchjkm 2"/m m 0013030- 8 
2. abcdjkrn 2'/m m 0012301- 8 6. abchjmp 3'm 3m 0001330- 6 
3. abchijk 2"/m m 0112210-10 7. acfhijk 3"m 3m 0001330-- 6 
4. abchikn 3"m 3m 1006000-12 8. acfhikn 3"m 3m 0000601- 6 

Augmented  cuboctahedron,  V=  18 
1. abcdefnpq T' 1 1133100-17 7. abcejmnst ]" 1 0023130-11 
2. abcdefnpt 1' 1 0231210-15 8. abcejmrst 3' 3 0003330- 9 
3. abcdefpqr ]" 1 0123201-13 9. abcjkmnpq i '  1 0022320-11 
4. abcdefprt -i-' 1 0023211-11 10. abcjkmnpt T' 1 0014301-11 
5. abcejmnpq 3' 3 0303300-15 11. abcjkmpqr 1' 1 0002421- 8 
6. abcejmnpt T' 1 0123120-13 12. abcjkmprt 1' 1 0002502- 8 

Augmented  cuboctahedron,  V = 2 0  
1. abcdefnpqr 2'/ m rn 1214200-18 15. abcejmpqrs T' 1 0022321-11 
2. abcdefnpqv 1' 1 1124110-17 16. abcejmprsu ~" 3 0030601-12 
3. abcdefnpuv 2"/m m 1042120-16 17. abcejmqstv 3' 3 0003331- 9 
4. abcdefnqrt ]" 1 0222301-15 18. abcejmstuv i '  1 0013231-10 
5. abcdefnqtv T' 1 0124111-14 19. abcjkmnpqr 2'/m m 0030601-12 
6. abcdefnrtu T' 1 0213211-14 20. abcjkmnpqv T' 1 0012430-11 
7. abcdefntuv 1' 1 0123121-13 21. abcjkmnpuv 2'/m m 0012340-10 
8. abcdefqrst 2'/m m 0040402-12 22. abcjkmnqrt i" 1 0013411-11 
9. abcdefqstv ]" 1 0023212-11 23. abcjkmnqtv i" 1 0003430-10 

10. abcdefstuv 2"/m m 0014122-10 24. abcjkmnrtu 1' 1 0012340-10 
11. abcejmnpqr 1' 1 0212320-14 25. abcjkmntuv ]" 1 0002440- 9 
12. abcejmnpqv ]-" 1 0122230-13 26. abcjkmqrst 2'/m rn 0004321-10 
13. abcejrnnpru 3" 3 0301600-15 27. abcjkmqstv T' 1 0002440- 9 
14. abcejrnnqtv 3' 3 0031330-12 28. abcjkmstuv 2"/m m 0000640- 8 

Dodecahedron  (platonic) 
1. abcdijkmnp 2'/m m 4420-11 11. abcdimnrsv 2'[m m 0244- 4 
2. abcdijkmnv 5'm 5m 5050-10 12. abcdimrsuv 5"m 5m 0505- 5 
3. abcdijkmpu 2"/m m 3430-10 13. abcdkmnpqr 1' 1 1351- 7 
4. abcdijknpt 3"m 3 m 4600-12 14. abcdknpqrt 2' / m m 0640- 8 
5. abcdijmnps 2'/rn m 2422- 8 15. abcdnqrstv 3"m 3m 1090- 6 
6. abcdikmnpr i" 1 1531- 8 16. abchijkmpu 3" 3 1630- 9 
7. abcdikmnrv 2"/m m 2242- 7 17. abchijmnsv 2"[m m 1252- 6 
8. abcdiknprt 3"m 3m 0901- 9 18. abchikmnpr 2"/m m 0460-- 7 
9. abcdikrtuv 2"/m m 2521- 9 19. abchimnprs 3' 3 0361- 6 

10. abcdimnprs 2"/m m 0343- 5 20. abchjmnqsv 3"m 3m 0064- 3 

* The connectivity symbols for the rhombic  dodecahedron  and the t r isoctahedron,  which are vertex-isomorphic with the 
te trahexahedron,  are 

Rhombic  dodecahedron  Trisoctahedron 
1. 0011410-8 1021210-11 
2. 0000322--4 0020221- 7 
3. 0002221-6 0202120-10 
4. 0004300-9 0301300-12 
5. 0001231-5 0102211- 8 
6. 0000061-3 0000061- 3 
7. 0001330-6 0031030- 9 
8. 0000601-6 0030301- 9 
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centric centrosymmetric polyhedral shells of charges 
in structural arrangements based on the cubic Bravais 
lattices (see below). Here of course it is appropriate to 
speak of assemblies of points rather than of convex 
polyhedra. The contribution to the EFG at So due to 
charges in each separate shell must each be zero. 

The number N 2 of  self-complementary configurations 
is obtained from the cycle index of a polyhedron by the 
substitutions s2,=t2,=2,  s2,+l=t2,+l=0.  The number 
N3 of all two-coloured configurations is found by 
substituting for s, and t, the generating function 
1 +x";  it is equal to the coefficient of the x v/2 term in 
the expanded cycle-index polynomial. 

The values of N1, N2, and N3 for the ~@t', sO' and se¢* 
polyhedra are listed in Table 6. For the icosidodeca- 
hedron and the trapezoidal hexecontahedron the 
interesting result is obtained that NI=N2, i.e. all the 
two-coloured SC configurations are SD, while for 
other polyhedra N2 may exceed N1 many times. 

The fraction NI/N3 decreases steadily with increasing 
V: for V=26 only about eight in 104 distinct black- 
white configurations are SD. The consequences of this 
decrease for the properties of point-charge assemblies 
on crystallographic lattices are discussed below. 

As V increases, the terms following t v in the cycle- 
index polynomial for N~ become rapidly unimportant. 
Nx can thus be estimated from the expressions 
In N~(cubic)_ 1:/2-In 48 and In N~(icosahedral)_~ V/2 
- l n  120, the accuracy of the estimate increasing 
asymptotically with V. Similarly, the fraction N1/Na 
can be estimated from the expressions In (N~/N3) ~ _ 
V /2 - In  v/2Cv- In 48 and In (N1/Na)~- V / 2 -  In v/2Cv- 
In 120. 

OCTAHEDRON 

I 

CUBE 

I 2 3 

CUBOCTAHEDRON 

I 2 3 
ICOSAHEDRON 

I 2 5 4 

Fig. 1. Mapping of the SD2C configurations on the octahedron, 
cube, cuboctahedron and icosahedron (Table 7) into topo- 
logically equivalent graphs ft. The points of each graph 
correspond to vertices of one colour. 

E x t e n s i o n  to  m o r e  t h a n  two  co lours  

The number N1 of distinct SD multicharge configura- 
tions is given by the number of distinct charge per- 
mutations over the black (or the white) vertices of the 
two-coloured configurations (Table 7). It is obtained 
from the cycle index of the two-coloured configuration 
of symmetry M by substituting for s, and t, the 
generating function a" +/?" + 7" + . . . ,  where the num- 
ber of terms is the number of distinct types of charge 
pairs, and determining the coefficient of the appro- 
priate term in the expanded cycle-index polynomial. 
The values of these coefficients are available for a large 
variety of V values and symmetries (Knop, Barker & 
White, 1975). 

For three and four colours each set of vertices of the 
same colour will be an SD configuration if and only 
if the three or four-colouring corresponds to a de- 
composition S : = 5 : j + 6 : ~ + S : ~  +5:~* ; for three- 
colourings one of the two complementary pairs of 
subsets must satisfy ~ j =  5e~. 

P r o p e r t i e s  o f  S D  c o n f i g u r a t i o n s  o n  s o m e  o f  the  
p o l y h e d r a  

Before listing the distinct SD2C configurations for the 
first few values of V it is necessary to identify the verti- 
ces of the suitably oriented polyhedra (Table 1). The 
identifying letters are used to indicate vertices of one 
colour and the resulting grouping of letters is reduced 
to the lowest equivalent lexicographic permutation 
(Table 7); permutations obtained from the configura- 
tion by rotation or reflection or both are regarded as 
equivalent. Each SD2C configuration listed is also 
mapped into a topologically equivalent planar graph ay 
(Figs. 1-5).I: corresponding to vertices of one colour.§ 
The graph is described by a connectivity symbol. For 

:I: Figs. 3 and 4, and Tables 8, 10 and 11 have been deposited 
with the British Library Lending Division as Supplementary 
Publication No. SUP 30597 (12 pp., 1 microfiche). Copies may 
be obtained through The Executive Secretary, International 
Union of Crystallography, 13 White Friars, Chester CH1 
1 NZ, England. 

§ This mapping is not unique: the graph for configurations 
Nos. 6 and 7 on the tetrahexahedron is an example of homo- 
morphism. Configurations Nos. 16 and 19 on the augmented 
cuboctahedron (V=20) have identical connectivity symbols, 
and likewise Nos. 21 and 24, and 25 and 27. With polyhedra 
other than isogonal, several different polyhedra may have the 
same number of vertices but the valencies of the vertices will 
differ. The rhombic dodecahedron, the tetrahexahedron, and 
the trisoctahedron all have V= 14, but their vertex valencies are, 
respectively, 4 and 3, 6 and 4, and 8 and 3. Adjacence of ver- 
tices along edges, for a given V, is then not uniquely defined 
and the topologically equivalent graphs (and connectivity 
symbols) of the SD2C configurations will be different (Fig. 2). 
However, NI, N2,N3,M,G, and the Coulombic energy depend 
only on the relative positions of the point charges at the ver- 
tices and not on the number and type of edges, the latter being 
in the present context merely an artifice to aid visualization; 
any one of the V-equivalent polyhedra can be used for verbal 
reference. The equivalent polyhedra are listed in the footnotes 
of Table 6. 
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example, 12300-8 for the configuration abcdef on the 
cuboctahedron stand for 4t32231°0°-8, which indicates 
that ff contains one tetravalent node, two trivalent, 
three divalent, no end points and no isolated points; 
the nodes are connected by eight edges which corre- 
spond with edges of the black half of the configuration 
on the cuboctahedron. Finally the symmetry groups 
G(C~) and M(c~) are also listed. 

With the exception of configuration no. 3 on the cube 
the M symmetries of the SD2C configurations are of 
one of the following types for all the polyhedra listed 
in Table 7: 1,m,3,3m,4mm,5m. For the composite 
polyhedra [tetrahexahedron = I +III ,  augmented cub- 
octahedron = I + II (V= 18) or II + I I I  (V= 20), etc.] 
this lack of variety is the result of superimposing two or 
more constituent SD configurations properly oriented 
relative to one another: the M symmetry of the 
resulting composite configuration is at most the inter- 
section of the M symmetries of the constituent con- 
figurations. 

For n similarly oriented 'nested' polyhedra of the 
same type the set of combinations of n SD configura- 
tions of the same type will contain 2 "-1 composite 
configurations of the same unreduced M symmetry as 
the n constituent configurations. Thus with two simil- 
arly oriented concentric cubes (V= 16) 19 SD2C con- 
figurations are possible, two of which have M=43m.  
These are the syn and anti combinations of the con- 
figurations acfh-acfh. They are examples of the rare 
situation where the G symmetry of an SD configura- 
tion containing more than one kind of charge is cubic, 
and of the even rarer situation where both G and M 
are cubic. Similar situations obtain with the truncated 
cube, the rhombicuboctahedron and the truncated 
cuboctahedron. The last-named case is particularly 
interesting in that a polyhedron which is a solution to 
equation (1) yields two SD2C configurations of cubic 
M symmetry, 43m and 432, so that for two concentric 
truncated cuboctahedra in similar orientations, in 
addition to the combinations 43m--43m (two of M =  
43m) and 432-432 (two of M=432) ,  two other com- 
binations exist, 43m-432 and 432-43m, both of symme- 
try M = 2 3 .  Similar situations exist for other combina- 
tions of configurations of cubic M symmetry. For cubic 
M symmetry to obtain, the black vertices of ~ must 
all be inside the octants of the axial reference system 
and not in the axial planes. 

When ff is totally disconnected, i.e. when no two of 
its points are adjacent (along an edge of if), its chro- 
matic number Z(f f )=  1.:I: Stated differently, ff is one- 
chromatic: one colour suffices for each of the points of 
f~ to have no adjacent points of the same colour. There 
is only one such graph among those shown here, that 
of configuration No. 3 on the cube. Graphs with Z = 2 

:I: For a more precise definition and criteria of chromaticity 
see Harary (1969). In particular, (1) Z(~)<2 if and only if fg 
has no odd cycles; (2) every planar graph has Z(f¢)< 5 (the 
Four Colour Conjecture asserts that Z(f¢)<4); and (3) every 
planar graph with fewer than four triangles has Z(ff)< 3. 

are more numerous, 20 out of the total of 79 in Figs. 
1-5 (Table 8).§ 

§ Table 8 has been deposited. See footnote ~ on p. 25. 

A B C 

o o 

o... ° 

io Io 
oi° 

Fig. 2. Mapping of the SD2C configurations on the three cubic 
convex polyhedra of V=I4 (Table 7) into topologically 
equivalent graphs ~. A, tetrahexahedron; B, rhombic 
dodecahedron; C, trisoctahedron. 
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o o ~ o ° o 

o-----o o--o ~ o-----o 

17 18 19 20 

Fig. 5. Mapping of the SD2C configurations on the (platonic) 
dodecahedron (Table 7) into topologically equivalent graphs 
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The chromatic number Z(f¢) is of interest for the 
following reason. When Z=  1, the black and white 
vertices of the configuration alternate; the nearest 
neighbours of a charge A on ~ are charges B and vice 
versa. When Z = 2  and the charges are A,B ,C ,D 
(arranged in centrosymmetric pairs A,D and B,C), 
the points of f¢ correspond to vertices of ~ of more 
than one colour. One or several four-colour arrange- 
ments on 9 ~ then exist in which no charge has a charge 
of the same kind as its nearest neighbour. When X= 3, 
the minimum number of colours required to colour f¢ 
in such a manner is three; this corresponds to six kinds 
of charges arranged in three types of centrosymmetric 
charge pairs. For a given composition, i.e. for a given 
number q of distinct centrosymmetric charge pairs, 
arrangements of this kind are possible only for SD 
configurations for which Z(f¢)_< q. Such arrangements 
on isogonal polyhedra$ permit the charge density on 
the surface of ~ to be more evenly distributed than 
any other arrangements, and the Coulombic energies 
of such configurations will be low. 

As would be expected, SD2C configurations whose 
graphs are trees of V points are rare (Table 8). 

Embedding of ZEFG configurations: 
ZEFG structures 

Under certain conditions cubic ZEFG charge confi- 
gurations can be embedded in compatible point-charge 
crystal structures. The centres of coordination poly- 
hedra containing the ZEFG configurations and defined 
by lattice points, form one or several three-dimensional 
lattice complexes LC. For homogeneous (i.e. con- 
taining charges of one kind only) ZEFG configura- 
tions to be so embeddable it is necessary that the site 
symmetry at points of LC be cubic. This requirement 
can be satisfied in all the cubic space groups except 
P213, 1213, Pa3, Ia3, P4132, P4332, 14132, I43d and 
Ia3d, possible lattice complexes being Pm3m(a), 
Fm3m(a), Im3m(a), Fd3m(a) (cf  Internationale Tabellen 
zur Bestimmung yon Kristallstrukturen, 1935). The re- 
sulting arrangement of point charges is a structure of 
infinite extension which has ZEFG at all points of LC, 
i.e. a ZEFG structure in LC. Representations of such 
abstract arrangements would be, for example, idealized 
structures of the NaCI or CsCI types, both of which 
are ZEFG in both the cation and the anion LC. 

Cubic two-colour ZEFG charge configurations can 
only be embedded if the site symmetry at the centres of 
the coordination polyhedra (i.e. at points of LC) is 
centrosymmetric cubic, m3m or m3. Hence only the 

:I: Where several non-isogonal polyhedra (cf. footnote {}, p. 
25) correspond to the same value of V, the adjacency of ver- 
tices, and the chromatic numbers of the topologically equiv- 
alent graphs if, refer to the polyhedron with the smallest 
number of edges. For V= 14 the appropriate ~ is the rhombic 
dodecahedron (Fig. 2), for V=26 the deltoid trapezohedron, 
for V=32 the rhombic triacontahedron, and for V=62 the 
trapezoidal hexecontahedron. All of these have 2:=2. 

space-group symmetries S in Table 9 are admissible for 
the und(ff'erentiated structure. 

Table 9. Admissible space-group symmetries S for the 
undifferentiated structure 

Site symmetry 
m3m 

m3 

s Point-position LC 
Pm3m l(a); l(b) Pm3m(a) 
Fm3m 4(a); 4(b) Fm3m(a) 
lm3m 2(a) lm3m(a) 
Pm3n 2(a) lm3m(a) 
Fm3c 8(b) Pm3m(a) 
Pm3 l(a); l(b) Pm3m(a) 
Fm3 4(a); 4(b) Fm3m(a) 
lm3 2(a) lm3m(a) 

Embedding a SD2C configuration on a compatible 
polyhedron in a lattice having one of these S symme- 
tries results in a structure of dichromatic space-group 
symmetry Gs containing a LC whose points have the 
symmetry f~s containing a LC whose points have the 
site symmetry 1'. Points of this complex are therefore 
grey, and the symmetry of LC is restricted to P2/m(a), 
C2/m(a), Pmmm(a), Cmmm(a), Fmmm(a), Immm(a), 
Fddd ( c) , P 4 / mmm( a) ,14 / mmm( a) , I 4 / amd ( c ) , R 3m( a , d ) , 
Pm3m(a), Fm3m(a), Im3m(a,b ), Fd3m(a, c); additional 
symmetries are admissible as a result of special choice 
of parameter values (cf. lnternationale Tabellen, 1935). 
The geometry of LC, as distinct from the symmetry 
of the charge arrangement, is of course always cubic. 

The symmetry of a two-colour ZEFG structure can 
also be described by the monochromatic subgroup 
Ms of index two in Gs. This subgroup is related to a 
monochromatic group Gs.m isomorphic with Gs: 
Ms x az is equal to Gs. m if az is a symmetry operation 
and to Gs if a2 is an antisymmetry (--colour) operation. 
The pairs Gs. reiMs defining Gs have been tabulated by 
Koptsik (1966) (Tables 10 and n8-nl2).  Gs, m is the 
group which results when a structure of symmetry Ms 
disorders relative to the charges connected by the T' 
anticentres of LC. 

Example 6. The solitary SD2C configuration abc on 
the octahedron is of symmetry M--3m,  G=3 'm .  It 
can be embedded in a structure containing sites of 
symmetry 3m (corresponding to Gs, m) on a LC of one 
of the above admissible types. Thus we have to find a 
space group Gs.m containing sites of symmetry 3m on 
a lattice complex LC(3m) and a corresponding space 
group Ms containing sites of symmetry 3m on a LC(3m) 
of the same type. Of the possible space groups (of. 
Internationale Tabellen, 1935, chaps. VII and VIII), 

Gs. m Pn3m Fd3m Im3m R-3m 
LC(3m) Fm3m(a) Fd3m(a) Pm3m(a) R3m(a),  

only R'3m has a subgroup Ms containing a LC(3m) of 
the same type as that occurring in Gs, m. This is R3m, 
LC = R'3m(a) in point-position l(a). The configuration 
abc can thus only exist in a structure of symmetry 
Gs, mlMs = R-3mIR3m, i.e. Gs = R3' m (tu166).99 
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Similarly, the only Gs. mlMs combination corre- 
sponding to the SD2C configuration on the cube acfh 
(m3ml'43m) in which LC(m3m) is of the same type as 
LC(43m), is Fm3mlF-43m, Gs =Fm3m' u~225J,t' 119x LC= 
Ym3m(a), point-positions 4(a) and 4(b) of Fm3m. 
Obviously as the site symmetry of ~ decreases, the 
number of possible Gs.mlMs pairs increases and the 
configuration can be embedded in a prescribed un- 
differentiated structure in more than one distinct ways. 
The possibility of admissible LCs being generated from 
special parameter values must not be left out of 
account. 

Example 7. Consider embeddings of the SD2C con- 
figurations on the cube in a structure of the fluorite 
type, of composition MXX' and having ZEFG in M. 
For the undifferentiated (X=X' )  structure, Ms = Gs = 
Fm3m" M in 4(a), X+X'  in 8(c); the LC in 4(a) is 
Fm3m(a). Three such embeddings are shown in Table 
10t and Fig. 6 (top). In the embedding of acfh the sites 
4(a), 4(c) and 4(d) do not contain centres of symmetry. 
However, their symmetry is cubic, 43m, and so the 
arrangement has ZEFG not only in M but also in X 
and X'. Since X and X'  are segregated on their own 
lattice complexes, Ms describes the symmetry of the 
arrangement adequately, without recourse to Gs; 
Gs.m=Fm3m corresponds to a disordered X+X'  
population. Representations of this arrangement are 
the structures of the ternary alloy phases of type C~b, 
FeSbTi and FeSbV (Krip'yakevich & Markiv, 1963; 
Gladyshevskii, Markiv, Kuz'ma & Cherkashin, 1963): 
Fe in 4(a), Sb in 4(c), Ti (or V) in 4(d), a triply ZEFG 
structure. 

Example 9. Consider embeddings of the SD2C con- 
figurations on the cube, the octahedron and the cub- 
octahedron in a perovskite structure (Table 11,.t. Fig. 
7). The undifferentiated structure, ABX3, is taken to 
consist of eight simple perovskite unit cells (Pm3m, 
Z =  1): Ms=Gs=Fm3m. Origin in A: A in 4(a) and 
4(b), B in 8(c), X in 24(d). Origin in B: A in 8(c), B in 
4(a) and 4(b), X in 24(e) {¼00}. The arrangement of 
charges in Fig. 7-3 corresponds to the idealized struc- 
ture of Cs2AgIAumC16 and Cs2AulAullIC16: acubie: 
atetra. I/2 = Ctetra., A = Cs, B = Ag or Au I, B' = Au m, 
X=CI(1)=CI(2) (cf. also the cubic or pseudocubic 
compounds Cs4M(AuC16)2, M = Cu, Zn, Cd, Hg) (Wy- 
ckoff, 1963-1965). In the arrangements of Figs. 7-3 
and 7-6 both the A and B sites are split into two 
point-positions. Ordering in AA'BB'X6 perovskite 
structures is therefore in principle always possible 
(KBaTiNbO4?, CaBaGeZrO4?). The arrangement of 
charages shown in Fig. 7-6 corresponds to the idealized 
perovskite superstructure of the (NH6)3FeF6 type: A = 
A'=NH4(1),  B[4(a)]=Fe, B[4(b)]=NH4(2), X = F .  

ZEFG in disordered structures 

Consider an idealized structure of the CsC1 type and of 
composition MX. One of the two interpenetrating p.c. 
lattices is occupied by point charges M and the other, 
by point charges X. Each M charge is surrounded by 
6 M charges at a distance rl, 12 M charges at r2, 8 M 
charges at r 3 etc. These charges form concentric poly- 

§ Table 11 has been deposited. See footnote :~ on p. 25. 

Example 8. The fluorite structure MXX' can be 'filled' 
by placing additional metal atoms in 4(b) to yield 
MzXX' (Fig. 6, bottom). The new structure has ZEFG 
in M. For the undifferentiated (X=X' )  structure, 
Ms=Gs=Fm3m: M in 4(a) and 4(b), X+X'  in 8(e); 
LC in 4(a) and 4(b), Fm3m(a). This unit cell may be 
considered as an octuple unit cell of the CsCI= 
M(XI/2X'~/2) type. The arrangement for acfh resembles 
that in Example 7 in that it has ZEFG in all four types 
of sites, 4(a), 4(b), 4(c) and 4(d), all of symmetry 43m, 
and is therefore fully described by Ms (Table 10). The 
arrangement described by Gs.m=Fm3m corresponds 
to disorder relative to X and X', but if X =  X', the 
idealized L2~ (A1MnCu2)-type structure results. For 
example, SnTiFe2 and SnVFe2 have been reported 
(Krip'yakevich & Markiv, 1963; Gladyshevskii et al., 
1963) to contain Sn in 4(a), Ti (or V) in 4(b), and Fe in 
8(c), again a triply ZEFG structure. The BiF3 arrange- 
ment (A1Fe3, SiFe3, SnNi3) is of the same type except 
that the sites 4(b) and 8(c) of Gs are occupied by atoms 
of the same element, i.e. the formulae are properly 
written as A1FeFe2 etc. 

:I: Table 10 has been deposited. See footnote ~: on p. 25. 

FLUORITE MXX' 

. 'o ...... "o. 
...... .'./ /: o'7 /o o'/ 

ZS:37 Z537 
/o" o°7 /. o~ 
/-:-I /,/ 

obcd abch ocfh 

"FILLED" FLUORITE M2XX' 

ZZZX /-Y-/ 
/-:%::/ / .  o'/ /.o o'/ 

/ -  oO/ / :  o~ 

abcd abch acfh 

o M  o x  eX' 

Fig. 6. Some ZEFG arrangements produced by embedding 
SD2C configurations on the cube in the cubic fluorite 
(MXX') and 'filled' fluorite (M2XX') structures. A unit cell 
one quarter the size of the fluorite cell can be chosen for the 
M2XX" arrangement based on abcd. 
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hedra ~ of symmetry m3m about M and embedded 
in a p.c. lattice. Each M atom is also surrounded by 
8 X at a distance r[, 24 X at r~, 24 X at r; etc. These 
concentric polyhedra ~ of symmetry m3m are em- 
bedded in the b.c.c, lattice containing the M and X 
atoms. This structure is thus a ZEFG structure with 
respect to both M and X. 

However, when the composition is changed to 
MXllzXll 2 and the charges X'  and X"  replacing X are 
distributed at random, the probability that the vertices 
of a polyhedron ~ of V~ vertices will be occupied by 
n charges X'  and Vi-n  charges X"  is P(V,n)= 
vlC, x2 -V t  Consequently only a fraction 2 -vt+~ of 
the M atoms will be surrounded by polyhedra <~ of 
composition Xv~ or Xvi, and 2 -vi x vlCgil2 of the M 

atoms by polyhedra ~ of composition XTzu2X~,u2. All 
the other polyhedra ~ (accounting for a fraction 
1 - 2 - v ~ + 1 - 2  -vi  × vtCvi/2 of the total) will have com- 
positions that preclude the possibility of a ZEFG at 
their respective M atoms. Thus for the above structure 
and V1=8 (#~=cube) ,  the fraction of M atoms at 
which the charge on P~ produce ZEFG, is 2-8[2+ 
(NJN3)xsC4]=37/256 (,-,14.5%); for Vz=24 (~@~= 
rhombicuboctahedron), 2-24[2 + (NI/N3) × 24C12] = 

0.000323 (~0-032%);  the fraction of M atoms at 
which the charges on ~ and ~2 produce ZEFG is less 
than 0.005 % of the total. 

The fraction 2 -Vx  vCv/2 decreases with increasing 
V approximately as (2~n F) ~/2. However, the steady 
decrease of NUN3 with increasing V is much more 

@A ~A' 

o B iB' 

ox ®X' 

AaBB'X 6 

AA'BaX s 

ZEFG in A 

o o---o o---p gTd  J , 
g o o o  # _ _  

.d-<2--~-o o - j  o ooO  
d ° o - 2 °  4 . ( o / o x  d ° o  o___~ 

• 0 '" 'o 7 ooj 
I 2 3 

ZEFG in B 

4 5 6 

I 
AaB2X~Xa 

ZEFG in B ZEFG in A 

7 8 9 I0 

Fig. 7. Some ZEFG arrangements produced by embedding SD2C configurations on the cube (1-6), octahedron (7) and cubocta- 
hedron (8-10) in the cubic pc1 ovskite structure. Unit cells smaller than the octuple perovskite unit cell shown can be chosen for 
some of the arlangements. 
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rapid: for V=26 only about eight in 104 distinct 
X;3X~'3 configurations are SD (Table 6), so that the 
term (NJN3) x 2 -z6 x z6C~3 is less than 0.0001 ,,~ 0.01%. 
Moreover, ~V~ in crystallographic lattices or lattice 
complexes increases with the radius of the outermost 
polyhedral shell, i.e. ~V~ is the number of lattice points 
of a cubic lattice that are inside and on the spherical 
shell of radius l/p =f( i ) ,  i being the number of consecu- 
tive shells (Table 12). 

Table 12. Number of  sites surrounding a site So 
Lattice type* 

i P.o. B.c.c. NaCI(I) NaCI(II) CaF2(IIx) 
1 6 8 12 6 4 
2 18 32 18 14 16 
3 26 56 42 38 28 
4 32 88 54 68 44 
5 56 136 78 92 68 

* Based on a tabulation by Wiley & Seman (1970). NaCI- 
type structures: M(so)-M, NaCI(I); M(so)-X, NaCI(II).CsC1- 
type structures: M(so)-M, p.c.; M(so)-X, b.c.c. CaF2-type 
structures: M(so)-M, CaF2(IM)=NaCI(1); M(so)=X, CaF2 
(IIM) = b.c.c.; X(s0)-X, CaFz(Ix) =p.c.; X(so)-M, CaFz(IIx). 

The fraction of homogeneous configurations Xv and 
Xv' decreases exponentially with increasing V: for 
V= 12 it is less than 0.05% of all the X~,J('~'2_, (0< 
n_< 12) configurations, and for V> 12 it is negligible. 

It is seen that even a completely disordered form of 
a Z E F G  structure contains SD charge configurations 
that produce Z E F G  at their centres, but the fraction of 
such configurations becomes unimportant after the 
second coordination shell. This must be considered in 
conjunction with the fact that the EFG produced at 
So by a charge u falls off with the inverse cube of the 
distance r of u from So. The values of properties which 
depend linearly on EFG will thus be reduced in the 
ratio (rdr~+l) 3 when going from ~@~ to ~ + ~  (Table 13). 

to be zero can still be satisfied, locally, if the space 
group of the structure contains symmetry operations 
that will produce a SD2C configuration of point 
charges, provided the lattice complex is dimensionally 
cubic. Such an arrangement of charges A and B ob- 
tains, for example, in a structure of  composition AB 
and specified by Ms--P4/nmm, c/a = 1"2, A in 2(a) and 
2(c) {02~-43}, B in 2(b) and 2(c) {0½k}, G~=P~4/nmm 
. 42o, (Table 14). This arrangement may be regarded as 1-1-1129) 

a short-range Z E F G  structure in 2(a) and 2(b) but 
Z E F G  in 2(c). 

Table 14. Arrangement o f  charges in structure o f  com- 
position AB 

This arrangement may be regarded as a short-range ZEFG 
structure in 2(a) and 2(b) 

Nearest neighbours r Configuration EFG 
Site So in 2(a) or 2(b), 42m, LC= P4/mmm (a) 

First V3 Cube A4B4 (acfh) 0 
Second I/4 Octahedron A4B2 or A2B4 ~0 
Third ]/8 Cuboctahedron AaB4 or A4Ba ~0 

Site so in 2(e), 4ram, LC = P4/nmm(c)'~ 
First 1/3 Cube A4Ba (abed) 0 
Second ]/4 Octahedron A6 or B6 0 
Third ]/8 Cuboctahedron A~2 or B~2 0 

t This LC is in reality P4/mmm(a), as a result of a special 
choice of the parameter z. 

Evidently the greater the r2/rl ratio, the greater the 
Z E F G  effectivity, at So, of the first coordination poly- 
hedron. In the present case the ratio is not very 
favourable, V'(~) giving (~)~/2~1.54. However, as 
shown in the preceding section, in the b.c.c, lattice 
rz/rl=l/(-~) and (r2/rl)a,.~7"02, so that in a pseudo 
Z E F G  structure based on this lattice the dominance 
of the first coordination polyhedron in determining 
the E F G  at So would be assured. 

Table 13. Ratios (rJr~ + 1) 3 for  different lattices 
Lattice (r2/rl) 3 (r3/rl) 3 (r4/rl) 3 

PC or NaCI(I) 23/z,,~2"83 33/2 ,-~ 5"20 2 3-- 8 
NaCI(II) 33/2 ,-~ 5"20 53/2 ,,~ 11" 18 33 = 27 
BCC or CaFz(IIx) (~_)3/2 ,~ 7"02 (~)3/2 ~ 15"94 33 = 27 

One of the consequences of the existence of Z E F G  
configurations in disordered cubic ionic crystals is that, 
on the point-charge model, there will always be a cer- 
tain non-zero calculated intensity of the M6ssbauer 
absorption at zero quadrupole splitting from SD con- 
figurations of the type Xvi/2Xv'~/2, but only the smallest 
coordination polyhedra about M* will contribute 
significantly. The situation in cubic (disordered) 
LiFeO2 has been analyzed from this point of view by 
Knop, Ayasse, Meads, Parker & Woodhams (1975). 

Pseudo Z E F G  structures 

In a structure that does not contain a cubic lattice 
complex of site symmetry T' the requirement for EFG 

A practical aspect: ZEFG structures as M6ssbauer 
null matrices 

In the point-charge model of  crystals consisting of 
atoms with localized charges any Z E F G  structure is a 
null matrix for M6ssbauer-active atoms M* in Z E F G  
sites. In other words, the contribution of the lattice 
term qlatt, to the quadrupole splitting of an STFe or 
~19Sn M6ssbauer spectrum will be zero, so that in a 
perfect, completely ordered crystal the observed 
quadrupole splitting will be a measure of  the departure 
of the electron-density distribution on M* from 
'spherical' symmetry. This isolation of the qv, le,ce term 
is always possible in structures in which the sites con- 
taining M* are surrounded by homogeneous charge 
configurations embedded in coordination polyhedra of 
cubic symmetry. It is also always possible in structures 
in which the coordination polyhedra contain two kinds 
of charges in SD configurations whose Ms symmetry 
is cubic (acfh configurations on the cube in Examples 
7-9). 
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It is disappointing that there does not seem to be 
available, even among likely candidates, a clear-cut 
example of a real, ordered crystal structure containing 
Fe 3÷ (high-spin) in a cubic environment: in such cir- 
cumstances the observed quadrupole splitting would 
yield information concerning departure of the real 
structure from the point-charge model. In the room- 
temperature (~) form of (NH4)aFeF6 the Fe atoms 
have been stated to occupy the 4(a) sites of Fm3m (on 
cooling the ~ form transforms reversibly into a tetra- 
gonal form); KaFeF6 has been reported to differ from 
~-(NH4)sFeF6 in that the F atoms occupy one-eighth of 
the 192(0 sites of Fm3m in statistical distribution 
instead of occupying the 24(e) sites (cf. Bode & Voss, 
1957). Yet Christoe & Drickamer (1970) observed for 
KaFeF6 at 295 °K and 1 atm a M6ssbauer quadrupole 
splitting of 0.78 mm s-1 and only a slightly lower value 
for (NH4)aFeF6 (presumably ~). They explain the 
splitting in K3FeF6 by a slight trigonal distortion of the 
FeF6 octahedra plus a contribution from covalency. 
Bode & Voss assume from their results that the 
distorted FeF6 octahedra in KaFeF6 have identical 
geometries but different orientations relative to rota- 
tion about the threefold axis, the orientations being 
distributed at random. However, Bode & Voss's 
evidence could not have distinguished between this 
arrangement and one in which the F atoms occupy -~ of 
the 192(l) sites at random without the constraint of 
constant FeF6 geometry, quite apart from the uncer- 
tain accuracy of the values of the F positional param- 
eters (reported by Bode & Voss) from which the 
amount of the trigonal distortion was calculated. The 
possibility thus cannot be ruled out that the line width 
of the M6ssbauer absorption ought to be interpreted 
as arising from a distribution of quadrupole splittings 
due to FeF6 octahedra of slightly different geometries, 
the visually very good fit of the KaFeF6 line by a 
symmetric (Lorentzian) doublet notwithstanding [Fig. 
l(a) of Christoe & Drickamer's paper]. In any case, it 
would be difficult to reconcile the splitting in KaFeF6, 
which is explained by the FeF6 distortion and covalen- 
cy, with the comparable splitting in ~-(NH4)aFeF6 /f 
the FeF6 octahedra in the ammonium compound are 
of symmetry m3m, as claimed; (NH4)aFeF6 can be 
expected to be no less covalent than KaFeF6 and in 
addition is very likely hydrogen-bonded. Distortion of 
the FeF6 octahedra would, of course, be expected in 
the low-temperature form of (NH4)aFeF6, but un- 
fortunately Christoe & Drickamer are not explicit on 
the nature and identity of the material they studied. 

When the Ms symmetry of the charge arrangement 
is not cubic, the structure has ZEFG at M* only if 
the charges are located on lattice(s) metrically in- 
distinguishable from one of cubic symmetry. This re- 
quirement, which can be satisfied by point charges in 
idealized arrangements, is unlikely to be fulfilled in real 
structures. Even if the effective sizes of two ions A a+ 
and B b+ (aCb)  are the same, charges of different 
magnitude will displace adjacent charges by different 

amounts from their idealized positions on a cubic 
lattice and distortions will result. Normally the effec- 
tive sizes ofA "+ and B b+ are different, which manifests 
itself by metric distortion of the unit cell of the ordered 
structure. The success of using a distorted structure as 
a null matrix and hence as a gauge of the ionicity of 
M* will then depend upon the amount by which the 
nearest-neighbour atoms surrounding M* are dis- 
placed from their ideal positions, relative to the inter- 
atomic separations in the idealized structure. If the 
relative displacements are large, estimates of the q~att. 
contribution to the quadrupole splitting made from a 
point-charge model will be uncertain and so will the 
resolution of the observed quadrupole splitting into 
the valence and the lattice terms. 

It is a pleasure to express our gratitude to Dr T. W. 
Melnyk, whose suggestions contributed greatly to 
improving the presentation of this paper, and to 
Professor J. D. H. Donnay, who made a number of 
helpful comments and pointed out some errors in the 
draft manuscript. 

References 

AYASSE, C. (1972). Ph.D. thesis. Dalhousie Univ., Halifax, 
N.S., Canada. August 1972. 

BIRSS, R. R. (1964). Symmetry and Magnetism, pp. 91-98. 
Amsterdam: North-Holland. 

BODE, H. & VOSS, E. (1957). Z. anorg, allgem. Chem. 290, 
1-16. 

CHRISTOE, C. W. • DRICKAMER, H. G. (1970). Phys. Rev. 
B1, 1813-1822. 

COLLINS, R. L. & TRAVIS, J. C. (1967). Mb'ssbauer Effect 
Methodology, Vol. 3, Edited by I. J. GRUVERMAN, p. 123. 
New York: Plenum. 

GLADYSHEVSKII, E. I., MARKIV, V. YA., KUZ'MA, Ytr. B. 
& CHERKASHIN, E. E. (1963). Titan i egosplavy (Moscow), 
10, 71-73. 

HARARY, F. (1969). Graph Theory, Chap. 12. Reading, 
Mass. : Addison-Wesley. 

HARARY, F. & PALMER, E. M. (1973). Graphical Enumera- 
tion. New York: Academic Press. 

lnternationale Tabellen zur Bestimmung yon Kristallstruk- 
turen (1935). Bd. I. Gruppentheoretische Tafeln. Berlin: 
Borntraeger. 

KNOP, O., AYASSE, C., MEADS, R. E., PARKER, W. G. & 
WOODHAMS, F. W. D. (1975). To be published. 

KNOP, O., BARKER, W. W. ~¢ WHITE, P. S. (1975). To be 
punished. 

KOPTSlK, V. A. (1966). Shubnikovskie gruppy. Moscow: 
Izdatel'stvo Moskovskogo Univ. 

KRH"YAKEVICH, P. I. & MARKIV, V. YA. (1963). Dopov. 
Akad. Nauk Ukr. RSR (Kiev), 12, 1606-1608. 

NOWACKI, W. (1933). Z. Kristallogr. 86, 19-31. 
PALMER, E. M. & ROBINSON, R. W. (1975). On the enumera- 

tion of self-dual configurations. In preparation. 
STEWART, B. M. (1970). Adventures among the Toroids. 

Okemos, Mich.: published by the author. 
WILEY, J. D. & SEMAN, J. A. (1970). Bell Syst. Tech. J. 

49, 355-378. 
WYCKOFF, R. W. G. (1963-1965). Crystal Structures. 2nd 

ed, Vols. 1-3. New York: Interscience. 


